Drug Delivery in Central Nervous System Disorders
Technologies, Companies and Markets

By
Prof. K. K. Jain
MD, FRACS, FFPM
Jain PharmaBiotech
Basel, Switzerland

November 2018

A Jain PharmaBiotech Report
AUTHOR'S BIOGRAPHY

Professor K. K. Jain is a neurologist/neurosurgeon by training with specialist’s qualifications. His personal experience includes some of the technologies mentioned in this report. He received graduate training in both Europe and USA and has held academic positions in several countries. He is a Fellow of the Faculty of Pharmaceutical Medicine of the Royal College of Physicians of UK and has been working in the biotechnology/biopharmaceuticals industry for several years. Currently he is a consultant at Jain PharmaBiotech. Prof. Jain’s 478 publications include 30 books (6 as editor + 24 as author) and 50 special reports, which have covered important areas in biotechnology, neurology, and pharmaceuticals.

ABOUT THIS REPORT

The original report on Drug Delivery in CNS Diseases by the author was published by Decision Resources Inc in 2000 as an enlargement of the chapter on this topic in his report on Drug Delivery Technologies (1998), which was also published by Decision Resources. The second edition was rewritten and published at Jain PharmaBiotech in 2004 and is being constantly rewritten since then.
TABLE OF CONTENTS

0. Executive Summary ... 16

1. Basics of Drug Delivery to the Central Nervous System ... 18
 Introduction .. 18
 Historical evolution of drug delivery for CNS disorders ... 18
 Neuroanatomical and neurophysiological basis of drug delivery 19
 The cerebrospinal fluid ... 19
 The lymphatic drainage system of the brain ... 19
 The extracellular space in the brain ... 20
 Neurotransmitters ... 21
 Extracellular vesicles as drug delivery vehicles ... 23
 Neuropharmacology relevant to drug delivery .. 23
 Introduction to neuropharmacology ... 23
 Pharmacokinetics .. 23
 Absorption and distribution of drugs ... 24
 Drug metabolism and elimination ... 24
 Pharmacodynamics .. 24
 Receptors ... 24
 Sites of drug action in the CNS .. 24
 Receptors coupled to guanine nucleotide binding proteins 25
 Acetylcholine receptor channels ... 25
 Dopamine receptors ... 25
 GABA receptor channels ... 26
 Glutamate receptor channels .. 26
 Non-competitive NMDA antagonists .. 26
 Serotonin receptors .. 27
 G-protein coupled receptors .. 27
 In vivo study of drug action in the CNS in human subjects ... 27
 Electroencephalography .. 27
 Brain imaging ... 28
 Chronopharmacology as applied to the CNS .. 28
 Role of drug delivery in personalized therapy of CNS disorders 29

2. Blood Brain Barrier .. 30
 Introduction ... 30
 Features of the blood-brain barrier relevant to CNS drug delivery 30
 The neurovascular unit ... 30
 Functions of the BBB .. 31
 BBB as an anatomical as well as physiological barrier ... 31
 BBB as a biochemical barrier .. 32
 Glucose transporters at the BBB ... 32
 Role of shear stress on development of BBB ... 33
 Genomics of BBB ... 33
 Proteomics of BBB ... 34
 Other neural barriers .. 34
 Blood-cerebrospinal fluid barrier ... 34
 Blood nerve barrier .. 35
 Blood-retinal barrier .. 35
 Blood-labyrinth barrier .. 35
 Passage of substances across the blood-brain barrier .. 35
 Adenosine carrier .. 36
 Amino acid transporters .. 37
 Efflux transport systems ... 38
 Glucose transporter ... 39
 Ionic transporter ... 39
 BBB-specific enzymes ... 40
 Receptor-mediated transcytosis .. 40
 Lysohofosphatidic acid-mediated increase in BBB permeability 41
 Folate transport system ... 41
 Transferrin receptor .. 41
 Molecular biology of the BBB ... 41
 Transport of peptides and proteins across the BBB ... 42
 Passage of leptin across the BBB ... 42
 Passage of cytokines across the BBB .. 42
 Passage of hormones across the BBB .. 43
 Passage of enzymes across the BBB .. 43
3. Methods of Drug Delivery to the CNS

3.1. Introduction

3.2. Routes of drug delivery to the brain

3.2.1. Drug deliveries to the brain via the nasal route

3.2.2. Devices for nasal administration of drugs for CNS

3.2.3. Nasal mucosal patch to facilitate drug delivery across the BBB

3.2.4. Passage of viruses to the brain via the nasal route

3.2.5. Potential and limitations of nasal drug delivery to the brain

3.2.6. Drugs that can be delivered to the brain via the nasal route

3.2.7. Erythropoietin

3.2.8. Esketamine

3.2.9. Hypocretin

3.2.10. IFN beta-1b

3.2.11. Lysosomal enzymes

3.2.12. Midazolam

3.2.13. Neurotrophic factors

3.2.14. Thyrotropin-releasing hormone

3.2.15. Neuroprotective drugs for stroke

3.2.16. Transdermal drug delivery for neurological disorders

3.3. Drug delivery to the brain via inner ear

3.4. Drug delivery for disorders of the spinal cord

3.4.1. Intrathecal drug delivery

3.4.2. Anatomical & physiological aspects of intrathecal drug delivery

3.4.3. Advantages of intrathecal drug delivery

3.4.4. Drugs that can be delivered by intrathecal route

3.4.5. Pharmacokinetics of intrathecal drug delivery

3.4.6. Retrograde delivery to the brain via the epidural venous system

3.4.7. Devices for drug delivery to the CNS

3.4.8. Catheters for drug delivery to the CNS

3.4.9. Reservoirs and pumps for drug delivery to the CNS

4. Strategies to cross the BBB

5. Testing permeability of the BBB

6. BBB in Alzheimer disease

7. BBB in Parkinson disease

8. BBB in amyotrophic lateral sclerosis

9. West Nile virus infection

10. Mitochondrial encephalopathies

11. Multiple sclerosis

12. Neurodegenerative disorders

13. BBB in neurodegenerative disorders

14. In vitro models of BBB

15. In vivo study of BBB

16. Brain imaging

17. In silico prediction of BBB

18. Relevance of the BBB penetration to pharmacological action

19. BBB penetration and CNS drug screening

20. BBB models for testing drug delivery

21. CERENSE

22. In vivo P-glycoprotein

23. Transthyretin monomer as a marker of blood-CSF barrier disruption

24. Evaluation of BBB permeability by brain imaging

25. Biomarkers of disruption of blood-brain barrier

26. Future directions for research on the BBB

27. Use of neural stem cells to construct the blood brain barrier

28. Strategies to cross the BBB

29. Passage of omega-3 fatty acids across the BBB

30. Drugs that cross the BBB by binding to plasma proteins

31. Current concepts of the permeability of the BBB

32. Factors that increase the permeability of the BBB

33. BBB disruption as an adverse effect of pharmaceuticals

34. BBB disruption as an adverse effect of vaccines for CNS disorders

35. Autoimmune disorders

36. Brain tumors

37. Primary brain tumors

38. Cerebral metastases

39. Central nervous system injuries

40. Cerebrovascular disease

41. Cerebral ischemia

42. Intracerebral hemorrhage

43. Epilepsy

44. Infections

45. Mitochondrial encephalopathies

46. Multiple sclerosis

47. Neurodegenerative disorders

48. BBB in neurodegenerative disorders

49. In vitro models of BBB

50. In vivo study of BBB

51. Brain imaging

52. In silico prediction of BBB

53. Relevance of the BBB penetration to pharmacological action

54. BBB penetration and CNS drug screening

55. BBB models for testing drug delivery

56. CERENSE

57. In vivo P-glycoprotein

58. Transthyretin monomer as a marker of blood-CSF barrier disruption

59. Evaluation of BBB permeability by brain imaging

60. Biomarkers of disruption of blood-brain barrier

61. Future directions for research on the BBB

62. Use of neural stem cells to construct the blood brain barrier

63. Strategies to cross the BBB

64. Passage of omega-3 fatty acids across the BBB

65. Drugs that cross the BBB by binding to plasma proteins

66. Current concepts of the permeability of the BBB

67. Factors that increase the permeability of the BBB

68. BBB disruption as an adverse effect of pharmaceuticals

69. BBB disruption as an adverse effect of vaccines for CNS disorders

70. Autoimmune disorders
Methods of delivery of biopharmaceuticals to the CNS

Invasive neurosurgical approaches ... 76
Intraarterial drug delivery to the brain .. 76
Direct injection into the CNS substance or CNS lesions 76
Targeted delivery of biologicals to the spinal cord by microinjection 77
Intraventricular injection of drugs ... 77

Strategies for drug delivery to the CNS across the BBB 78
Increasing the permeability (opening) of the BBB .. 78
Osmotic opening of the BBB ... 78
Focal disruption of BBB by ultrasound .. 79
Chemical opening of the BBB ... 79
Cerebral vasodilatation to open the BBB ... 79
Modulation of vascular permeability by laser irradiation 80
Neurostimulation for opening BBB ... 80
Use of nitric oxide donors to open the BBB .. 81
Manipulation of the sphingosine 1-phosphate receptor system 81

Pharmacological strategies to facilitate transport across the BBB 81
2B-Trans™ technology ... 82
ABC afflux transporters and penetration of the BBB 82
Adenosine agonist-mediated drug delivery across the BBB 83
Carrier-mediated drug delivery across the BBB .. 83
Fusion of receptor-binding peptide from apoE with therapeutic protein 84
G-Technology® .. 84
Glycosylation Independent Lysoosomal Targeting ... 85
Inhibition of P-glycoprotein to enhance drug delivery across the BBB 85
LipoBridge™ technology .. 86
Modification of the drug to enhance its lipid solubility 86
Monoclonal antibody fusion proteins ... 86
Neuroimmunophilins ... 87
Peptide-mediated transport across the BBB .. 87
Prodrug bioconversion strategies and their CNS selectivity 87
Transport of small molecules across the BBB .. 90
Transport across the BBB by short chain oligoglycerolipids 90
Transvascular delivery across the BBB .. 90
Trojan horse approach ... 90
Role of the transferrin-receptor system in CNS drug delivery 91
Use of receptor-mediated transcytosis to cross the BBB 91

Cell-based drug delivery to the CNS .. 93
Activated T lymphocytes .. 94
Microglial cells .. 94
Neural stem cells .. 94

Drug delivery to the CNS by using novel formulations 94
Crystalline formulations ... 94
Liposomes ... 94
Monoclonal antibodies .. 96
Microspheres .. 96
Microbeads .. 97

Brain-targeted chemical delivery systems ... 97

Nanotechnology-based drug delivery to CNS ... 98
Nanoparticles for drug delivery across the BBB ... 98
NanoDef™ technology for crossing the BBB .. 99
Masking BBB-limiting characteristics by nanotechnology 99
Nanovehicles for transport across BBB .. 99
Peptide-nanoparticle conjugates for crossing the BBB 99
Penetration of BBB by nanoparticles coated with polysorbate 80 100
Targeting nicotinic acetylcholine receptor .. 100
Transcytosis of transferrin-containing nanoparticles across the BBB 100

Nanotechnology-based devices and implants for CNS 101

Biochip implants for drug delivery to the CNS ... 101
Controlled-release microchip .. 101
Retinal implant chip ... 101

Convection-enhanced delivery to the CNS ... 102

Systemic administration of drugs for CNS effects 103
Sustained and controlled release drug delivery to the CNS 103
Fast dissolving oral selegiline .. 104
Choice of the route of systemic delivery for effect on the CNS disorders 105

Methods of delivery of biopharmaceuticals to the CNS 105
Delivery of biopharmaceuticals across the BBB ... 105
Methods of delivery of peptides for CNS disorders 106
Alteration of properties of the BBB for delivery of peptides 106
Challenges for delivery of peptides across the BBB 106
CNS delivery of peptides via conjugation to biological carriers 107
Delivery of conopeptides to the brain .. 107
Direct delivery of neuropeptides into the brain .. 107
Molecular manipulations of peptides to facilitate transport into CNS 108
Transport to spinal cord motor neurons after peripheral injection 108
Transnasal administration of neuropeptides ... 109
Delivery of neurotrophic factors to the nervous system ... 109
Systemic administration of NTFs .. 110
Delivery systems to facilitate crossing of the BBB by NTFs ... 111
Direct application of NTFs to the CNS ... 112
Intracerebroventricular injection .. 112
Intrathecal administration .. 113
Implants for delivery of neurotrophic factors ... 113
Use of neurotrophic factor mimics .. 114
Use of microspheres for delivery of neurotrophic factors .. 115
Use of nanobiotechnology for delivery of neurotrophic factors 115
Use of microorganisms for therapeutic entry into the brain ... 116
Bacteriophages as CNS therapeutics ... 116
Intracellular drug delivery in the brain .. 116
Local factors in the brain affecting drug action .. 117
Method of drug delivery to the CNS ... 117
Animal models for testing drug delivery .. 117
Screening for drug-P-gp interaction at BBB ... 117

4. Delivery of Cell, Gene and Antisense Therapies to the CNS 120

Introduction .. 120
Cell therapy of neurological disorders ... 120
Methods for delivering cell therapies in CNS disorders .. 120
Cerebrospinal fluid-stem cell interactions for therapy of CNS disorders 121
Engineered stem cells for drug delivery to the brain .. 121
Encapsulated cells ... 122
Intrathecal delivery of stem cells .. 122
Intraparenchymal delivery of stem cells to the spinal cord .. 123
Intravascular administration .. 123
Neural stem cells as therapeutic delivery vehicles ... 124
Gene therapy techniques for the nervous system ... 124
Introduction .. 124
Methods of gene transfer to the nervous system .. 126
AAV vector mediated gene therapy for neurogenetic disorders 126
Ideal vector for gene therapy of neurological disorders .. 126
Promoters of gene transfer ... 127
Routes of delivery of genes to the nervous system .. 127
Direct injection into CNS .. 127
Introduction of the genes into cerebral circulation ... 128
Introduction of genes into cerebrospinal fluid .. 128
Intravenous administration of vectors ... 129
Delivery of gene therapy to the peripheral nervous system .. 129
Cell-mediated gene therapy of neurological disorders .. 129
Neuronal cells ... 129
Neural stem cells and progenitor cells ... 129
Astrocytes ... 130
Cerebral endothelial cells .. 130
Implantation of genetically modified encapsulated cells into the brain 130
Genetically modified bone marrow cells .. 130
Nanoparticles as nonviral vectors for CNS gene therapy ... 131
Applications of gene therapy for neurological disorders .. 131
Companies involved in cell/gene therapy of neurological disorders 132
Antisense therapy of CNS disorders ... 133
Delivery of antisense oligonucleotides to the CNS ... 134
Delivery of oligonucleotides cross the BBB ... 135
Cellular delivery systems for oligonucleotides .. 136
High-flow microinfusion into the brain parenchyma ... 136
Systemic administration of peptide nucleic acids .. 136
Introduction of antisense compounds into the CSF Pathways 137
Intrathecal administration of antisense compounds .. 137
Intracerebroventricular administration of antisense oligonucleotides 137
Nanoparticle-based delivery of antisense therapy to the CNS 138
Methods of delivery of ribozymes ... 138
Delivery aspects of RNAi therapy of CNS disorders ... 139
Delivery of siRNA to the CNS ... 139
Future drug delivery strategies applicable to the CNS ... 140

- 6 -
5. Drug Delivery for Treatment of Neurological Disorders

Introduction

Targeted drug delivery for neurological disorders

Parkinson's disease

Drug delivery systems for Parkinson's disease

Methods of delivery of levodopa in PD

Duodenal levodopa infusion

Sublingual apomorphine

Transdermal drug delivery for PD

Transdermal dopamine agonists for PD

Transdermal administration of other drugs for PD

Intracerebral administration of GDNF

Cell therapy for PD

Human dopaminergic neurons for PD

Encapsulated cells for PD

Stem cells for PD

Engineered stem cells for drug delivery to the brain in PD

Human retinal pigment epithelium cells for PD

Delivery of cells for PD

Gene therapy for Parkinson disease

Rationale

Techniques of gene therapy for PD

Prospects of gene therapy for PD

Companies developing gene therapy for PD

RNAI therapy of Parkinson's disease

Alzheimer disease

Drug delivery for Alzheimer disease

Blood-brain partitioning of an AMPA receptor modulator

Clearing amyloid through the BBB

Delivery of the passive antibody directly to the brain

Delivery of thyrotropin-releasing hormone analogs by molecular packaging

Nanoparticle-based drug delivery for Alzheimer's disease

Perisphinal etanercept

Slow release implant of an ACHE inhibitor

Intranasal insulin in Alzheimer disease

Transdermal drug delivery in Alzheimer's disease

Trojan-horse approach to prevent build-up of Aβ aggregates

Cell and gene therapy for Alzheimer disease

NGF gene therapy

Neprilysin gene therapy

RNAI therapy of Alzheimer’s disease

RNAI therapy of Alzheimer’s disease

Huntington's disease

Treatment of HD

Gene therapy of HD

Encapsulated genetically engineered cellular implants

Viral vector mediated administration of neurotrophic factors

RNAI therapeutics for the treatment of HD

Amyotrophic lateral sclerosis

Treatment of ALS

Drug delivery in ALS

Delivery of stem cell therapy for ALS

Gene and antisense therapy of ALS

Neurotrophic factor gene therapies of ALS

Antisense therapy of ALS

RNAI therapy of amyotrophic lateral sclerosis

Cerebrovascular disease

Treatment of stroke

Drug delivery in stroke

Intraarterial administration of tissue plasminogen activator in stroke

Drug delivery for prevention of restenosis of carotid arteries

In-stent restenosis

Targeted local anti-restenotic drug delivery

Catheter-based drug delivery for restenosis

Stents for prevention of restenosis

Drug-eluting stents

Antisense approach to prevent restenosis

Drug-eluting stents for the treatment of intracranial atherosclerosis

Tissues transplants for stroke

Transplant of encapsulated tissue secreting neurotrophic factors
Methods for delivery of neurotrophic factors in stroke .. 180
Cell therapy for stroke .. 180
Stem cell transplant into the brain ... 181
Immortalized cell grafts for stroke ... 181
Intravenous infusion of marrow stromal cells .. 181
Intravenous infusion of umbilical cord blood stem cells ... 182
Future of cell therapy for stroke ... 182
Gene therapy of cerebrovascular diseases ... 182
Gene transfer to cerebral blood vessels .. 183
NOS gene therapy for restenosis .. 184
Gene therapy for cerebral ischemia ... 184
Gene therapy of strokes with a genetic component .. 186
Drug delivery to intracranial aneurysms .. 186
Drug delivery for vasospasm following subarachnoid hemorrhage 186
Intrathecal tissue plasminogen activator ... 187
Gene therapy for vasospasm .. 188

Drug delivery in multiple sclerosis ... 189
An electronic device for self injection of interferon beta-1a ... 189
Oral therapies for MS ... 189
Drug delivery for MS across the BBB ... 190
Delivery of methylprednisolone across the BBB .. 190
Monoclonal antibodies for MS and the BBB .. 190
Antisense and RNAI approaches to MS ... 190
Cell therapy for multiple sclerosis ... 191
Hematopoietic stem cell transplantation for multiple sclerosis .. 191
Embryonic stem cells and neural precursor cells for MS ... 192
Gene therapy for multiple sclerosis ... 192

Drug delivery in epilepsy .. 192
Routes of administration of antiepileptic drugs .. 192
Controlled-release preparations of carbamazepine .. 193
Intravenous carbamazepine ... 193
Various routes of administration of benzodiazepines .. 194
Methods of delivery of novel antiepileptic therapies .. 194
Regulated activation of prodrugs .. 194
Use of neuronal membrane transporter ... 194
Delivery of the antiepileptic conopeptides to the brain .. 195
Nasal administration of AEDs ... 195
Intracerebral administration of AEDs .. 195
The role of drug delivery in status epilepticus .. 196
Cell therapy of epilepsy .. 197
Gene therapy for epilepsy ... 197
Gene therapy for neuroprotection in epilepsy .. 198
Concluding remarks on drug delivery in epilepsy ... 198

Drug delivery for pain ... 199
Intranasal delivery of analgesics ... 200
Intranasal administration of morphine .. 200
Intranasal morphine derivatives .. 200
Intranasal fentanyl ... 201
Intranasal buprenorphine ... 202
Intranasal ketamine .. 202
Intranasal ketorolac .. 202
Delivery of analgesics by inhalation .. 202
Delivery of analgesics to peripheral nerves .. 203
Spinal delivery of analgesics ... 204
 Epidural dexamethasone ... 204
 Epidural morphine .. 205
 Relief of pain by intrathecal ziconotide .. 206
 Intrathecal neostigmine .. 206
 Intrathecal prostaglandin antagonists ... 207
 Intrathecal fadolmidine .. 207
 Intrathecal siRNA for relief of neuropathic pain ... 207
 Concluding remarks on intrathecal delivery of analgesic agents 208
 Intracerebroventricular drug delivery for pain ... 208
 Delivery of analgesics to the CNS across the BBB .. 208

Drug delivery for migraine ... 209
Management of migraine ... 209
Novel drug delivery methods for migraine ... 210
Nasal formulations for migraine .. 211
Sublingual spray for migraine .. 211
Needle-free drug delivery for migraine ... 211

Drug delivery for traumatic brain injury ... 212
6. Drug delivery for brain tumors ... 232

Introduction .. 232

Methods for evaluation of anticancer drug penetration into brain tumor 232

Innovative methods of drug delivery for glioblastoma 232

Delivery of anticancer drugs across the blood–brain barrier 233

Anticancer agents with increased penetration of BBB 233

BBB disruption ... 234

Nanoparticle-based target delivery of chemotherapy across the BBB 235

Tyrosine kinase inhibitor increases topotecan penetration into CNS 237

Bypassing the BBB by alternative methods of drug delivery 237

Intranasal perillyl alcohol .. 237

Intraarterial chemotherapy ... 238

Enhancing tumor permeability to chemotherapy 238

PDE5 inhibitors for increasing BTB permeability 238

Local delivery of therapeutic agents into the brain 239

Biodegradable microspheres containing 5-FU ... 239

Carmustine biodegradable polymer implants ... 239

Fibrin glue implants containing anticancer drugs 240

Interstitial delivery of dexamethasone for reduction of peritumor edema 240

Magnetically controlled microspheres .. 240

Convection-enhanced delivery ... 241
CED for receptor-directed cytotoxin therapy .. 241
CED of topotecan .. 241
CED of a modified diphtheria toxin conjugated to transferrin 241
CED of nanoliposomal CPT-11 ... 242
CED for delivery 131I-chTNT-1/B MAb .. 242
Anticancer drug formulations for targeted delivery to brain tumors 242
Intravenous delivery of anticancer agents bearing transferrin 242
Liposomes for drug delivery to brain tumors ... 242
MAbs targeted to brain tumors ... 243
Targeted delivery of drug-peptide conjugates to glioblastoma 244
Multiple targeted drugs for brain tumors ... 244
Nanoparticles for targeted drug delivery in glioblastoma 245
Targeted antiangiogenic/apoptotic/cytotoxic therapies 246
Targeted drug delivery to gliomas using cholera toxin subunit B 246
Introduction of the chemotherapeutic agent into the CSF pathways 247
Intraventricular chemotherapy for meningeal cancer 247
Intrathecal chemotherapy .. 247
Photodynamic therapy for chemosensitization of brain tumors 248
Nanoparticles for photodynamic therapy of brain tumors 248
Innovative delivery of radiotherapy to brain tumors 248
GliaSite Radiation Therapy System .. 248
Boron neutron capture therapy for brain tumors ... 249
Cell therapy for malignant brain tumors ... 249
Chimeric antigen receptor T cells .. 249
Mesenchymal stem cells to deliver treatment for gliomas 250
Intra-cavity stem cell therapy for medulloblastoma 250
Gene therapy for glioblastoma ... 250
Antiangiogenic gene therapy .. 251
Anticancer drug delivery by genetically engineered MSCs 252
Intravenous gene delivery with nanoparticles into brain tumors 252
Ligand-directed delivery of dsRNA molecules targeted to EGFR 252
Neural stem cells for drug/gene delivery to brain tumors 253
Peptides targeted to glial tumor cells ... 254
RNAi gene therapy of brain cancer ... 254
Single-chain antibody-targeted adenoviral vectors .. 254
Targeting normal brain cells with an AAV vector encoding interferon-β 255
Poliovirus-based vaccine for glioblastoma ... 255
Treatment of medulloblastoma by suppressing genes in Shh pathway 256
Virus-mediated oncolytic therapy of brain cancer .. 257
HIV-mediated Oncolysis .. 257
Reovirus-mediated Oncolysis ... 258
Measles virus-mediated oncolysis .. 258
Oncolytic virus targeted to brain tumor stem cells 258
Oncolytic therapy with vesicular stomatitis virus ... 259
Future of viral-mediated oncolysis .. 259
Vaccination for glioblastoma ... 259

7. Markets for Drug Delivery in CNS Disorders .. 260
Introduction .. 260
Methods of calculation of CNS drug delivery markets 260
Markets for CNS drug delivery technologies ... 260
Drug delivery share in selected CNS markets .. 261
CNS share of drug delivery technologies ... 261
Geographical distribution of CNS drug delivery markets 262
Impact of improved drug delivery on CNS drug markets 262
Neurodegenerative disorders .. 262
Alzheimer disease .. 263
Parkinson disease .. 263
Huntington disease .. 263
Amyotrophic lateral sclerosis ... 263
Epilepsy ... 264
Migraine and other headaches .. 264
Stroke .. 264
Central nervous system trauma .. 265
Multiple sclerosis .. 265
Brain tumors ... 265
Limitations of the current drug delivery technologies for CNS 266
Unmet needs in CNS drug delivery technologies ... 266
Regulatory considerations for drugs that cross the BBB 266
Public-private collaboration for transfer of research to the clinic 268
Future strategies for expanding CNS drug delivery markets................................. 268
Education of neurologists ... 268
Demonstration of the advantages of the newer methods of delivery 269
Rescue of old products by novel drug delivery methods 269
Facilitation of the approval process of new drugs ... 269

8. Companies ... 270

Introduction ... 270
Profiles of companies.. 270
Collaborations ... 356

9. References ... 360

Tables

Table 1-1: Landmarks in the development of drug delivery to the CNS 18
Table 2-1: Proteins expressed at the neurovascular unit .. 31
Table 2-2: Transporters that control penetration of molecules across the BBB 36
Table 2-3: Enzymes that control the penetration of molecules across the BBB 40
Table 2-4: Factors that increase the permeability of the BBB 45
Table 2-5: Diseases with associated disturbances of BBB 46
Table 3-1: Various methods of drug delivery to the central nervous system 62
Table 3-2: Drugs available for intrathecal administration 72
Table 3-3: Investigational drugs administered by intrathecal route 72
Table 3-4: Strategies for drug delivery to the CNS across the BBB 78
Table 3-5: Specific inhibitors of P-glycoprotein in clinical development 85
Table 3-6: Molecules attached to Trojan horses injected intravenously for CNS effect 90
Table 3-7: Examples of controlled and sustained release drug delivery for CNS disorders 104
Table 3-8: Novel methods of delivery of drugs for CNS disorders 105
Table 3-9: Indications for the clinical applications of NTFs in neurologic disorders 109
Table 3-10: Methods for delivery of neurotrophic factors to the CNS 110
Table 4-1: Methods for delivering cell therapies in CNS disorders 121
Table 4-2: Classification of methods of gene therapy ... 125
Table 4-3: Methods of gene transfer as applied to neurologic disorders 126
Table 4-4: Potential indications for gene therapy of neurologic disorders 131
Table 4-5: Companies developing cell/gene therapies for CNS disorders 133
Table 4-6: Methods of antisense delivery as applied to the CNS 134
Table 5-1: Strategies for the treatment of Parkinson’s disease 142
Table 5-2: Drug delivery systems for Parkinson’s disease 144
Table 5-3: Types of cell used for investigative treatment of Parkinson’s disease ... 149
Table 5-4: Status of cell therapies in development for Parkinson’s disease 149
Table 5-5: Gene therapy techniques applicable to Parkinson disease 155
Table 5-6: Companies developing gene therapy for Parkinson’s disease 159
Table 5-7: Classification of pharmacotherapy for Alzheimer disease 160
Table 5-8: Novel drug delivery methods for Alzheimer disease therapies 161
Table 5-9: Classification of neuroprotective agents for amyotrophic lateral sclerosis 169
Table 5-10: Methods of delivery of therapies in development for ALS 170
Table 5-11: Classification of treatments for stroke .. 174
Table 5-12: Treatments of stroke involving innovative drug delivery methods 175
Table 5-13: Drug delivery for prevention of carotid artery restenosis after angioplasty 177
Table 5-14: Gene transfer in animal models of carotid artery restenosis 183
Table 5-15: Neuroprotective gene transfer strategies in models of cerebral ischemia 184
Table 5-16: Gene Therapy for reducing cerebral infarction in animal stroke models 185
Table 5-17: Pharmacological agents for treatment of cerebral vasospasm 187
Table 5-18: Gene therapy strategies for vasospasm ... 188
Table 5-19: A classification of drug delivery methods used in management of pain 199
Table 5-20: Spinal administration of drugs for pain ... 204
Table 5-21: Investigational drugs for pain administered by intrathecal route 204
Table 5-22: Current management of migraine ... 209
Table 5-23: Novel drug delivery methods for migraine .. 210
Table 6-1: Innovative methods of drug delivery for glioblastoma 232
Table 6-2: Strategies for gene therapy of malignant brain tumors 250
Table 7-1: Share of drug delivery technologies in selected CNS markets: 2017-2027 261
Table 7-2: CNS market share of drug delivery technologies 2017-2027 261
Table 7-3: Value of CNS drug delivery in the major world markets from 2017-2027 262
Table 7-4: Limitations of the current drug delivery technologies for CNS 266
Table 8-1: Alkermes pipeline .. 277
Table 8-2: Collaborations of companies in CNS drug delivery 356
Figures

Figure 1-1: Interaction of neurotransmitters with receptors ... 22
Figure 2-1: The neurovascular unit .. 30
Figure 2-2: Various forms of passage of substances across the blood brain barrier 36
Figure 2-3: Role of BBB models for drug delivery in preclinical CNS drug development 58
Figure 3-1: Routes of drug delivery to the brain .. 63
Figure 3-2: Extracellular mechanism for drug transportation to the brain following intranasal administration .. 64
Figure 3-3: Penetration of CSF into spinal cord .. 71
Figure 3-4: Disposition of opioids after intrathecal administration ... 73
Figure 3-5: Use of receptor-mediated transcytosis to cross the BBB ... 92
Figure 3-6: Nanotechnology-based strategies for delivery of BDNF to the CNS 116
Figure 5-1: Oral versus transdermal administration of a drug in Parkinson’s disease 147
Figure 5-2: Effect of tyrosine hydroxylase gene delivery on dopamine levels 156
Figure 5-3: Trojan horse approach for delivery of AGT-181 to the brain .. 219
Figure 6-1: A concept of targeted drug delivery to glioblastoma across the BBB 235
Figure 6-2: Mechanism of antitumor effects of poliovirus-based vaccine for glioblastoma 256
Figure 7-1: Unmet needs in the CNS drug delivery technologies ... 267