Animal Biotechnology
Technologies, Markets & Companies

by
Prof. K. K. Jain
MD, FRACS, FFPM
Jain PharmaBiotech
Basel, Switzerland

September 2020

A Jain PharmaBiotech Report
AUTHOR'S BIOGRAPHY

Professor K. K. Jain is a neurologist/neurosurgeon with specialist qualifications including Fellowships of the Royal Colleges of Surgeons in Australia and Canada. He has trained, practiced and held academic positions in several countries including Switzerland, India, Iran, Germany Canada and USA. After retirement from neurosurgery, Prof. Jain remains a consultant in neurology. He is also working in the biotechnology/biopharmaceuticals industry and is a Fellow of the Faculty of Pharmaceutical Medicine of the Royal College of Physicians of UK. Currently, he is the CEO of Jain PharmaBiotech.

Table of Contents

0. Executive Summary ... 14

1. Introduction to Animal Biotechnology .. 16
 Introduction ... 16
 Historical evolution of animal biotechnology 16
 Basics of biotechnology ... 17
 DNA .. 17
 RNA .. 17
 Genes .. 18
 Single nucleotide polymorphisms ... 18
 Copy number variations in the genome 18
 DNA sequences ... 19
 Gene expression ... 19
 Gene regulation .. 20
 Proteins ... 20
 Functions of proteins .. 21
 Recombinant proteins ... 21

Animal genetics .. 22
 Molecular genetics ... 22
 Twinning in cattle ... 22
 Pig genetics .. 22
 Genetic studies in dogs ... 23

Animal genomics ... 23
 Avian genomes .. 23
 Chicken genome ... 23
 Turkey genome ... 24
 The mouse genome .. 25
 The cat genome ... 25
 The dog genome ... 26
 Sequencing of the dog genome ... 27
 Comparison of genomes of healthy and diseased dogs 28
 Analysis of DNA copy number variation 29

Marsupial genomes ... 29
 Genome of the Tibetan antelope ... 30
 Livestock genomics .. 30
 Bovine genome .. 31
 Bovine SNP map .. 32
 1,000 Bull Genomes Project ... 33
 Bovine stomach microbiome genes 33
 Camel genome .. 34
 Goat genome ... 34
 Horse genome .. 35
 Pig genome .. 36
 Sheep genome .. 37

Fish genomes .. 37
 The Salmon genome .. 37
 Genome of the Northern snakehead 37
 Whale genome .. 39
 Genomes of non-human primates .. 39
 Chimpanzee genome .. 40
 Genome of the rhesus macaque ... 40
 Genome of gorilla .. 41
 Priority genome list of the National Human Genome Research Institute ... 41

Animal proteomics ... 42
 Applications of proteomics in animals 42
 Caseins in goat milk .. 43
 Lactic acid bacteria ... 43
 Applications of proteomics in animal healthcare 43

Bioinformatics ... 43
 Biomarkers and animal health ... 45
 Personalized medicine for pet animals 47
 Monoclonal antibodies and animal health 47
 Antigenomics .. 47

Nanobiotechnology and animal health 48
 Stem cells and animal biotechnology 48
 Rescuing extinct animals with stem cells 48
 Animal biotechnology in relation to other technologies 49
2. Application of Biotechnology in Animals ... 52

Introduction .. 52

Applications of animal genomics .. 52

- Bovine ankyrin 1 gene and beef tenderness .. 52
- Chicken breeding based on genomics .. 53
- Genomics of disease resistance .. 53
- Genomic selection to exploit gene-environment interactions 53
- Genome wide associations and milk production in cows 54
- Low cost genotyping for genetic improvement in dairy cattle 54
- SNPs and longevity in dairy cattle ... 54
- Share genomic data to improve cattle breeding 55
- Statistical genomics to improve breeding .. 55

Genetic engineering and gene editing ... 55

- CRISPR/Cas9 gene editing in animals ... 55
- Disease control by genetic engineering ... 56
- Improvement of livestock by genetic engineering 56
- Limitations and precautions for genetic engineering 56

Transgenic animal technology .. 56

- Cloning animals .. 58
 - Nuclear transfer technology ... 58
 - Nuclear bisection for cloning ... 59
 - Zona-free cloning method .. 60
 - Abnormalities in cloned animals .. 60
 - Cloning from embryonic cells ... 62
 - Cloning of rabbits ... 62
 - Cloning the rat .. 62
 - Cloning the horse .. 63
 - Cloning the cow ... 63
 - Cloning the dog .. 63
 - Cloning in primates .. 64
 - Episomal vector-mediated gene delivery .. 64
 - Lentiviral transduction of male germ-line stem cells 64
 - Lentiviral transgenesis ... 65
 - Retrovirus-mediated production of transgenic animals 65
 - Sperm-mediated gene transgenesis ... 65

Animal models of human diseases .. 66

- Gene editing in large animals ... 66
- Cloning of gene-edited dogs as models of human genetic diseases 68

Production of recombinant proteins ... 68

Transgenic pharmaceuticals ... 68

- Proteins from the milk of transgenic animals ... 69
 - Advantages of milk as source of transgenic proteins 70
 - Therapeutic proteins from rabbit milk .. 71
 - Recombinant human antibodies from goats ... 71
 - Therapeutic proteins from goat milk ... 72
- Chicken transgenesis for production of biopharmaceuticals 72
- Concluding remarks about production of transgenic proteins in animals 73
- Companies involved in production of transgenic pharmaceuticals 73

Transgenic food products ... 74

- Milking genetically modified cows ... 74
- Genetically modified fish .. 74
 - Genetically engineered salmon ... 74
 - Gene transfer approaches to enhance growth of other fish species 75
- Cloned animals as sources of milk and meat .. 75

Animal feeds from transgenic plants ... 76

Transgenic modification of plants to increase nutritional value of animal feeds 76

Transgenic disease models ... 76

- Technologies to create transgenic disease models 76
 - Gene manipulation techniques .. 77
 - Embryonic stem cells for gene targeting .. 77
 - Homologous recombination ... 77
 - Transgenic animal models of human diseases 78
 - Transgenic models for studying human drug metabolism and toxicity .. 79
- The Human Genome Project and the role of transgenics 79
- Genomic and proteomic analyses of transgenic animal models 80
- Concern about health and welfare of transgenic animals 80
- Safety of transgenic technology .. 81
- Concluding remarks about use of transgenic animals 81

RNA interference technology .. 81

- RNAi versus antisense ... 81
- Applications of RNAi in animal biotechnology 82
3. A Biotechnology Perspective of Animals Diseases

<table>
<thead>
<tr>
<th>Perspective of Animals Diseases</th>
<th>86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>86</td>
</tr>
</tbody>
</table>

Infections in animals

<table>
<thead>
<tr>
<th>Infections in animals</th>
<th>86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral infections</td>
<td>87</td>
</tr>
<tr>
<td>Avian viral infections</td>
<td>87</td>
</tr>
<tr>
<td>Avian influenza</td>
<td>87</td>
</tr>
<tr>
<td>Animal biotechnology implications of H1N1 influenza</td>
<td>90</td>
</tr>
<tr>
<td>Animal corona viruses and human SARS</td>
<td>91</td>
</tr>
<tr>
<td>Avian coronavirus</td>
<td>91</td>
</tr>
<tr>
<td>Acute lymphoproliferative disease of cattle</td>
<td>92</td>
</tr>
<tr>
<td>Bluetongue virus</td>
<td>93</td>
</tr>
<tr>
<td>Canine virus infections</td>
<td>93</td>
</tr>
<tr>
<td>Classical swine fever</td>
<td>94</td>
</tr>
<tr>
<td>Developing new treatments against FMD</td>
<td>94</td>
</tr>
<tr>
<td>Equine viruses</td>
<td>95</td>
</tr>
<tr>
<td>Feline virus infections</td>
<td>96</td>
</tr>
<tr>
<td>Foot-and-mouth disease</td>
<td>96</td>
</tr>
<tr>
<td>Porcine reproductive and respiratory syndrome virus</td>
<td>98</td>
</tr>
<tr>
<td>Rabies</td>
<td>98</td>
</tr>
<tr>
<td>Rinderpest</td>
<td>99</td>
</tr>
<tr>
<td>Schnellenberg virus</td>
<td>99</td>
</tr>
<tr>
<td>Virus infections in fishes</td>
<td>100</td>
</tr>
<tr>
<td>Bacterial infections</td>
<td>100</td>
</tr>
<tr>
<td>Bovine tuberculosis</td>
<td>100</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>101</td>
</tr>
<tr>
<td>Mycoplasmal pneumonia</td>
<td>101</td>
</tr>
<tr>
<td>Fungal infections</td>
<td>101</td>
</tr>
<tr>
<td>Protozoal infections</td>
<td>102</td>
</tr>
<tr>
<td>Toxoplasmosis</td>
<td>102</td>
</tr>
<tr>
<td>Trypanosomiasis</td>
<td>103</td>
</tr>
<tr>
<td>Nematodes</td>
<td>103</td>
</tr>
<tr>
<td>Infections that cross the species barrier</td>
<td>104</td>
</tr>
<tr>
<td>Complications of bacterial infections and antibiotic use in animals</td>
<td>104</td>
</tr>
</tbody>
</table>

Transmissible spongiform encephalopathies (TSEs)

<table>
<thead>
<tr>
<th>Transmissible spongiform encephalopathies (TSEs)</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-species transfer of prions</td>
<td>105</td>
</tr>
<tr>
<td>Scrapie</td>
<td>105</td>
</tr>
<tr>
<td>Bovine spongiform encephalopathy</td>
<td>105</td>
</tr>
<tr>
<td>Epidemiology of BSE</td>
<td>106</td>
</tr>
<tr>
<td>Biomarkers in the urine of BSE infected cattle</td>
<td>106</td>
</tr>
<tr>
<td>Human health implications of BSE</td>
<td>107</td>
</tr>
<tr>
<td>Breeding animals protected against BSE</td>
<td>107</td>
</tr>
<tr>
<td>TSE research</td>
<td>107</td>
</tr>
<tr>
<td>Prion gene haplotyping</td>
<td>107</td>
</tr>
<tr>
<td>Pharmacological approaches to TSE research</td>
<td>108</td>
</tr>
<tr>
<td>Molecular diagnostic approach to TSE research</td>
<td>108</td>
</tr>
<tr>
<td>siRNA for knockdown of the bovine prion gene</td>
<td>108</td>
</tr>
</tbody>
</table>

Chronic wasting disease

<table>
<thead>
<tr>
<th>Chronic wasting disease</th>
<th>109</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic wasting disease in wildlife</td>
<td>109</td>
</tr>
<tr>
<td>Chronic wasting disease of the cattle</td>
<td>110</td>
</tr>
</tbody>
</table>

Genetic disorders in farm animals

<table>
<thead>
<tr>
<th>Genetic disorders in farm animals</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic predisposition to acquired diseases in animals</td>
<td>111</td>
</tr>
</tbody>
</table>

Overcoming limits of cancer chemotherapy in veterinary medicine

| Overcoming limits of cancer chemotherapy in veterinary medicine | 111 |

Diseases of pet animals

<table>
<thead>
<tr>
<th>Diseases of pet animals</th>
<th>112</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canine anemia</td>
<td>112</td>
</tr>
<tr>
<td>Canine autoimmune diseases</td>
<td>112</td>
</tr>
<tr>
<td>Canine neuropsychiatric disorders</td>
<td>112</td>
</tr>
<tr>
<td>Canine obsessive-compulsive disorder</td>
<td>113</td>
</tr>
<tr>
<td>Canine dementia</td>
<td>113</td>
</tr>
<tr>
<td>Canine epilepsy</td>
<td>113</td>
</tr>
<tr>
<td>Canine glaucoma</td>
<td>114</td>
</tr>
<tr>
<td>Canine cardiovascular disease</td>
<td>114</td>
</tr>
<tr>
<td>Heart failure</td>
<td>114</td>
</tr>
</tbody>
</table>
4. Molecular Diagnostics in Animals .. 124

Introduction .. 124

Nucleic acid technologies .. 124
The polymerase chain reaction .. 124
Basic Principles of PCR .. 124
Target selection .. 125
Detection of amplified DNA ... 125
Real-time PCR systems .. 125
LightCycler PCR system .. 126
Molecular beacons .. 126
Applications of PCR in veterinary medicine 126
Fluorescent in situ hybridization 127

Immunodiagnostics ... 129
Enzyme-linked immunoassays .. 129
Bovine Gamma Interferon Test ... 129
Antigen diagnosis of trichinosis ... 130
Parachek™ for the diagnosis of Johne's disease 130
Antibodies for differentiation between vaccinated and infected animals .. 131

Biochip/microarray technology .. 131
Applications of microarrays in animal biotechnology 132
eSensor™ electrochemical biochip 132
FR 48 microfluidic biochip ... 132
SNPchip® v.3 for standardizing livestock SNP data............... 133

Biosensors ... 133
Imunosensors ... 134
Biosensor for ovulation prediction in dairy cows 134

Flow cytometry for animal diagnostics 135
Molecular imaging in animals .. 135
Veterinary cytogenetics .. 136
Applications of sequencing for veterinary diagnostics 137
Role of sequencing in detection of cancer biomarkers 137
DNA sequencing for study of bacterial epidemics 137
Role of sequencing in epidemic of Shiga toxin-producing E. coli .. 138
Role of sequencing in the study of genetic disorders in animals .. 138

Applications of molecular diagnostics in animals 139
Canine DNA testing ... 139
Use and abuse of genetic testing of dogs 140
Cat pedigree determined by gene tests 141
Diagnostic aids to selective breeding 141
Selection of desirable traits .. 141
Gene variations and fat content of beef 142
Using genetic markers for improved milk production in dairy cattle .. 142
Application of bovine genomics for improving milk yield .. 143
Recognition of hereditary syndromes 143
Genetic markers in animals .. 144
SNP genotyping in animals .. 144
SNP genotyping for selective breeding of chicken 144
Animal identity and parentage analysis 144
Animal species identification in food 145
Diagnosis of infections .. 145
Bacterial infections ... 145
Diagnosis of fungal infections in animals 146
5. Biotechnology-based Veterinary Medicine ... 168
 Introduction .. 168
 Biotechnology versus pharmaceutical products 168
 Role of biotechnology in drug discovery and development 169
 Biological therapies in veterinary medicine 169
 Cost of veterinary vs. human drug discovery and development 169
 Advantages and disadvantages of testing biotech products in animal models 170
 Biotechnology-based antiparasitic drugs ... 170
 Non-antibiotic strategies for control of infections in animals 170
 Probiotics .. 170
 Potential role for probiotics in the human gut 171
 Potential role for probiotics in animals 171
 Probiotic bacteria for control of pathogens in cattle 172
 Nonantibiotic drugs for infections in animals 173
 Immunomodulation as an alternative to antibiotics in infections 173
 Cathelicidins: effector molecules of mammalian innate immunity ... 173
 Bacteriophage therapy for antibiotic resistance 174
 Biotechnology for treating tendon injuries 174
 Use of growth factors to facilitate tendon injuries 174
 Productivity enhancers ... 175
 Bovine somatotropin for increasing milk production in dairy cows 175
 Increasing milk production in cows by feeding propionibacteria 176
 Use of growth factors .. 176
 Transgenic plant products for use in animals 177
 Biotechnology-based vaccines ... 177

Diagnosis of viral infections ... 146
 Molecular diagnosis of avian influenza .. 148
 Molecular diagnosis of swine influenza .. 149
 Diagnosis of parasitic infections ... 149
 Detection of natural or bioterror threats to livestock 150
 Detection of Trichomonas foetus DNA in cattle 151
 Molecular diagnosis of prion diseases .. 151
 Bovine spongiform encephalopathy .. 151
 Testing for BSE in living animals ... 153
 Prions in urine .. 153
 Diagnosis of chronic wasting disease in wildlife 153
 Developing new tests for prion diseases .. 154
 Differentiation among various types of TSEs 154
 Protein cyclic amplification .. 154
 Antibody tests for prion diseases ... 155
 Scrapie genotyping .. 155
 A real-time ultrasonic method for prion protein detection 156
 Companies involved in developing molecular diagnostics for TSEs 156
 Diagnosis of genetic disorders ... 157
 Genes associated with exercise-induced collapse 157
 Preimplantation genetic diagnosis .. 157
 Diagnosis of cancer in animals .. 158
 Diagnosis of skin cancer ... 158
 Diagnosis of canine mammary carcinoma .. 158
 Diagnosis of food-borne pathogens .. 159
 Introduction .. 159
 Molecular diagnostic methods used in food-borne infections 159
 Detection of Listeria-contaminated foods .. 160
 Optical biosensor for detection of Listeria 160
 Real-time PCR for detection of Listeria 160
 Detection of Salmonella .. 161
 MicroSEQ® Salmonella Detection Kit ... 161
 Detection of toxoplasmosis ... 161
 E. Coli detection .. 161
 DuPont Bax system ... 161
 MLG method for detection of multiple STEC strains 162
 RapidFinder™ STEC .. 162
 A genomic approach to study of animal food-borne illness in humans 163
 Limitations of use of molecular probes in food analysis 163
 Companies with technologies for food pathogen detection 163
 Biotechnology-based novel diagnostics for aquatic animals 164
 Detection of chemicals in foods of animal origin 165
 Companies developing molecular diagnostics for animals 165
 Prions in urine .. 153
 Diagnosis of chronic wasting disease in wildlife 153
 Developing new tests for prion diseases .. 154
 Differentiation among various types of TSEs 154
 Protein cyclic amplification .. 154
 Antibody tests for prion diseases ... 155
 Scrapie genotyping .. 155
 A real-time ultrasonic method for prion protein detection 156
 Companies involved in developing molecular diagnostics for TSEs 156
 Diagnosis of genetic disorders ... 157
 Genes associated with exercise-induced collapse 157
 Preimplantation genetic diagnosis .. 157
 Diagnosis of cancer in animals .. 158
 Diagnosis of skin cancer ... 158
 Diagnosis of canine mammary carcinoma .. 158
 Diagnosis of food-borne pathogens .. 159
 Introduction .. 159
 Molecular diagnostic methods used in food-borne infections 159
 Detection of Listeria-contaminated foods .. 160
 Optical biosensor for detection of Listeria 160
 Real-time PCR for detection of Listeria 160
 Detection of Salmonella .. 161
 MicroSEQ® Salmonella Detection Kit ... 161
 Detection of toxoplasmosis ... 161
 E. Coli detection .. 161
 DuPont Bax system ... 161
 MLG method for detection of multiple STEC strains 162
 RapidFinder™ STEC .. 162
 A genomic approach to study of animal food-borne illness in humans 163
 Limitations of use of molecular probes in food analysis 163
 Companies with technologies for food pathogen detection 163
 Biotechnology-based novel diagnostics for aquatic animals 164
 Detection of chemicals in foods of animal origin 165
 Companies developing molecular diagnostics for animals 165

- 7 -
6. Research in Animal Biotechnology .. 208
7. Animal Biotechnology Markets ... 224

Introduction ... 224

Markets for biotechnology-based products for animal healthcare 225

Markets for recombinant proteins for animal healthcare 226
Markets for vaccines for animals .. 226

Markets for animal diagnostics .. 227
Test for bovine spongiform encephalopathy .. 227
Markets for transgenic laboratory animals .. 228

Animal biotechnology markets according to therapeutic areas 228

Markets for biotechnology-based animal products for humans 229
Transgenic proteins ... 229
Market for xenotransplantation ... 229

Strategies for promoting use of animal biotechnology 230
Financial losses from death and disease in animals 230
Losses in farm animals .. 230
Losses in poultry ... 230
Losses in equine industry ... 230
The emerging role of pet owners .. 231

Improvement in cattle through application of biotechnology 231
Economic aspects of genomic evaluation of dairy cattle 231
Pig market .. 231
Cattle Market .. 232
Poultry market ... 232
Milk from genetically modified cows .. 232

Impact of biotechnology on fish markets .. 233
Role of biotechnology in livestock performance enhancer market 233
Gene transfer technologies .. 233
In vitro meat production and animal biotechnology markets 233
Cost-benefit aspects of transgenic proteins .. 234
Lower costs of transgenic production ... 234
Lower costs of treatment .. 234

Unmet needs in animal biotechnology ... 234

Future of animal biotechnology .. 235
Farm animals .. 236
Global trends in epidemiology of livestock diseases 236
Genetic engineering of animals ... 236
Companion animals .. 236
Animal molecular diagnostic markets ... 237
Future marketing status of animal-derived biotechnology products 237

8. Regulatory issues .. 238
 Introduction ... 238
 Regulatory agencies for veterinary biotechnology in the US 238
 FDA regulatory issues in agricultural biotechnology 239
 FDA guidelines on use of antibiotics in food-producing animals ... 240
 FDA and veterinary stem cell therapy ... 241
 Food safety evaluation of transgenic animals 242
 Food from cloned animals ... 243
 FDA investigation of drug transfer into eggs 244
 Animal feed safety ... 245
 Medicated feeds .. 246
 Regulatory issues of transgenic proteins 246
 Risks of animal biotechnology ... 246
 FDA regulation of bovine products .. 247
 Worldwide biotechnology regulatory and trade issues 247

9. Companies Involved in Animal Biotechnology 250
 Introduction ... 250
 Biotechnology at top veterinary pharmaceutical companies 250
 Profiles of selected companies .. 250
 Collaborations ... 347

10. References .. 350

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1-1</td>
<td>Landmarks in the evolution of animal biotechnology in the 20th century</td>
<td>16</td>
</tr>
<tr>
<td>Table 1-2</td>
<td>Applications of proteomics in livestock industry and veterinary medicine</td>
<td>42</td>
</tr>
<tr>
<td>Table 1-3</td>
<td>Selected animal genomics and proteomics databases (DB)</td>
<td>44</td>
</tr>
<tr>
<td>Table 1-4</td>
<td>Examples of use of biomarkers in animal health</td>
<td>45</td>
</tr>
<tr>
<td>Table 2-1</td>
<td>Applications of genomics in livestock industry and veterinary medicine</td>
<td>52</td>
</tr>
<tr>
<td>Table 2-2</td>
<td>Expression systems for production of recombinant proteins 68</td>
<td></td>
</tr>
<tr>
<td>Table 2-3</td>
<td>Recombinant proteins obtained from milk of transgenic animals</td>
<td>71</td>
</tr>
<tr>
<td>Table 2-4</td>
<td>Companies involved in the production of transgenic pharmaceuticals</td>
<td>73</td>
</tr>
<tr>
<td>Table 2-5</td>
<td>A comparison of gene knockout and transgenic techniques 77</td>
<td></td>
</tr>
<tr>
<td>Table 2-6</td>
<td>Examples of transgenic mouse models of non-neoplastic human diseases</td>
<td>78</td>
</tr>
<tr>
<td>Table 3-1</td>
<td>Diseases of dairy cattle ...</td>
<td>86</td>
</tr>
<tr>
<td>Table 3-2</td>
<td>Causes of chronic wasting disease in animals 109</td>
<td></td>
</tr>
<tr>
<td>Table 4-1</td>
<td>Applications of microarrays in animal biotechnology</td>
<td>132</td>
</tr>
<tr>
<td>Table 4-2</td>
<td>Biosensor technology in animal health</td>
<td>134</td>
</tr>
<tr>
<td>Table 4-3</td>
<td>Applications of molecular diagnostics in animals 139</td>
<td></td>
</tr>
<tr>
<td>Table 4-4</td>
<td>Viruses that can be detected by molecular diagnostics 146</td>
<td></td>
</tr>
<tr>
<td>Table 4-5</td>
<td>Testing for harmful prions in brain tissue from dead cattle 151</td>
<td></td>
</tr>
<tr>
<td>Table 4-6</td>
<td>Companies involved in developing molecular diagnostics for TSEs</td>
<td>156</td>
</tr>
<tr>
<td>Table 4-7</td>
<td>Pathogenic bacteria in food and targets for molecular diagnostic probes</td>
<td>159</td>
</tr>
<tr>
<td>Table 4-8</td>
<td>Companies involved in molecular diagnostics for food-borne infections</td>
<td>163</td>
</tr>
<tr>
<td>Table 4-9</td>
<td>Companies developing molecular diagnostics for veterinary medicine</td>
<td>165</td>
</tr>
<tr>
<td>Table 5-1</td>
<td>Veterinary biotechnology products ..</td>
<td>168</td>
</tr>
<tr>
<td>Table 5-2</td>
<td>Pharmaceutical versus biotechnology products</td>
<td>169</td>
</tr>
<tr>
<td>Table 5-3</td>
<td>Nonantibiotic strategies for control of infections</td>
<td>170</td>
</tr>
<tr>
<td>Table 5-4</td>
<td>Experimental DNA vaccines tested in animals</td>
<td>181</td>
</tr>
<tr>
<td>Table 5-5</td>
<td>Companies developing biotechnology-based vaccines for animals</td>
<td>190</td>
</tr>
<tr>
<td>Table 6-1</td>
<td>Areas for future research applications of animal biotechnologies ...</td>
<td>217</td>
</tr>
<tr>
<td>Table 7-1</td>
<td>Worldwide markets for biotechnology-based products for farm animals: 2019-2029</td>
<td>225</td>
</tr>
<tr>
<td>Table 7-2</td>
<td>Worldwide markets for biotechnology-based products for pet animals: 2019-2029</td>
<td>225</td>
</tr>
<tr>
<td>Table 7-3</td>
<td>Biotechnology-based markets for animal healthcare according to regions: 2019-2029</td>
<td>226</td>
</tr>
<tr>
<td>Table 7-4</td>
<td>Biotechnology markets for farm animals according to therapeutic areas: 2019-2029</td>
<td>228</td>
</tr>
<tr>
<td>Table 7-5</td>
<td>Biotechnology markets for pet animals in therapeutic areas: 2019-2029</td>
<td>228</td>
</tr>
<tr>
<td>Table 7-6</td>
<td>Worldwide markets for biotechnology-based animal products for humans: 2019-2029</td>
<td>229</td>
</tr>
<tr>
<td>Table 7-7</td>
<td>Future marketing status of animal-derived biotechnology products</td>
<td>237</td>
</tr>
<tr>
<td>Table 9-1</td>
<td>Ranking of top veterinary companies with biotechnology products .</td>
<td>250</td>
</tr>
<tr>
<td>Table 9-2</td>
<td>Selected collaborations of companies in animal biotechnology</td>
<td>347</td>
</tr>
</tbody>
</table>
Figures

Figure 1-1: Relation of animal biotechnology to other technologies and human health.................. 50
Figure 2-1: Nuclear transfer technology.. 59
Figure 2-2: Generation of transgenic animals by sperm-mediated gene transfer............................. 66
Figure 2-3: Genome editing in pigs .. 67
Figure 2-4: Production of therapeutic proteins in the milk of transgenic animals............................. 70
Figure 7-1: Unmet needs in animal biotechnology... 235